close
close

Lassa virus protein–protein interactions as mediators of Lassa fever pathogenesis | Virology Journal

  • Hepojoki J, et al. Characterization of Haartman institute snake virus-1 (HISV-1) and HISV-like viruses-the representatives of genus Hartmanivirus, family Arenaviridae. PLoS Pathog. 2018;14(11):e1007415. https://doi.org/10.1371/journal.ppat.1007415.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Radoshitzky SR, et al. ICTV virus taxonomy profile: Arenaviridae. J Gen Virol. 2023;104(9):001891.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hallam SJ, Koma T, Maruyama J, Paessler S. Review of mammarenavirus biology and replication. Front Microbiol. 2018;9:1751. https://doi.org/10.3389/fmicb.2018.01751.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stenglein MD, et al. Widespread recombination, reassortment, and transmission of unbalanced compound viral genotypes in natural arenavirus infections. PLoS Pathog. 2015;11(5):e1004900.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hepojoki J, et al. Arenavirus coinfections are common in snakes with boid inclusion body disease. J Virol. 2015;89(16):8657–60.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Argenta FF, et al. Identification of reptarenaviruses, hartmaniviruses, and a novel chuvirus in captive native Brazilian boa constrictors with boid inclusion body disease. J Virol. 2020;94(11):10–1128.

    Google Scholar 

  • Pontremoli C, Forni D, Sironi M. Arenavirus genomics: novel insights into viral diversity, origin, and evolution. Curr Opin Virol. 2019;34:18–28. https://doi.org/10.1016/j.coviro.2018.11.001.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Garry CE, Garry RF. Proteomics computational analyses suggest that the antennavirus glycoprotein complex includes a class I viral fusion protein (α-penetrene) with an internal zinc-binding domain and a stable signal peptide. Viruses. 2019. https://doi.org/10.3390/v11080750.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen Y-M, et al. Host traits shape virome composition and virus transmission in wild small mammals. Cell. 2023;186(21):4662–75.

    CAS 
    PubMed 

    Google Scholar 

  • Lukashevich IS, Paessler S, de la Torre JC. Lassa virus diversity and feasibility for universal prophylactic vaccine. Faculty Rev. 2019;8:134. https://doi.org/10.12688/f1000research.16989.1.

    Article 
    CAS 

    Google Scholar 

  • Johnson DM, et al. Bivalent Junin & Machupo experimental vaccine based on alphavirus RNA replicon vector. Vaccine. 2020;38(14):2949–59. https://doi.org/10.1016/j.vaccine.2020.02.053.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoffmann C, et al. Lassa virus persistence with high viral titers following experimental infection in its natural reservoir host, Mastomys natalensis. Nat Commun. 2024;15(1):9319.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hallam HJ, et al. Baseline mapping of Lassa fever virology, epidemiology and vaccine research and development. Npj Vaccines. 2018;3(1):1–12.

    Google Scholar 

  • Ilori EA, et al. Epidemiologic and clinical features of Lassa fever outbreak in Nigeria, January 1-May 6, 2018. Emerg Infect Dis. 2019;25(6):1066–74. https://doi.org/10.3201/eid2506.181035.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salami K, Gouglas D, Schmaljohn C, Saville M, Tornieporth N. A review of Lassa fever vaccine candidates. Curr Opin Virol. 2019;37:105–11. https://doi.org/10.1016/j.coviro.2019.07.006.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mateer EJ, Huang C, Shehu NY, Paessler S. Lassa fever-induced sensorineural hearing loss: a neglected public health and social burden. PLoS Negl Trop Dis. 2018;12(2):e0006187–e0006187. https://doi.org/10.1371/journal.pntd.0006187.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Forni D, Sironi M. Population structure of Lassa mammarenavirus in West Africa. Viruses. 2020;12(4):437.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garry RF. Lassa fever—the road ahead. Nat Rev Microbiol. 2023;21(2):87–96.

    CAS 
    PubMed 

    Google Scholar 

  • Sattler RA, Paessler S, Ly H, Huang C. Animal models of lassa fever. Pathogens. 2020;9(3):197.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson DM, Jokinen JD, Lukashevich IS. Attenuated replication of Lassa virus vaccine candidate ML29 in STAT-1-/-Mice. Pathogens. 2019;8(1):9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fehling SK, Lennartz F, Strecker T. Multifunctional nature of the arenavirus RING finger protein Z. Viruses. 2012;4(11):2973–3011. https://doi.org/10.3390/v4112973.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Strecker T, et al. Lassa virus Z protein is a matrix protein sufficient for the release of virus-like particles. J Virol. 2003;77(19):10700–5. https://doi.org/10.1128/jvi.77.19.10700-10705.2003.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kentsis A, Gordon RE, Borden KLB. Self-assembly properties of a model RING domain. Proc Natl Acad Sci U S A. 2002;99(2):667–72. https://doi.org/10.1073/pnas.012317299.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Capul AA, Perez M, Burke E, Kunz S, Buchmeier MJ, de la Torre JC. Arenavirus Z-glycoprotein association requires Z myristoylation but not functional RING or late domains. J Virol. 2007;81(17):9451–60. https://doi.org/10.1128/JVI.00499-07.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perez M, Greenwald DL, de la Torre JC. Myristoylation of the RING finger Z protein is essential for arenavirus budding. J Virol. 2004;78(20):11443–8. https://doi.org/10.1128/JVI.78.20.11443-11448.2004.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Strecker T, Maisa A, Daffis S, Eichler R, Lenz O, Garten W. The role of myristoylation in the membrane association of the Lassa virus matrix protein Z. Virol J. 2006;3:93–93. https://doi.org/10.1186/1743-422X-3-93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neuman BW, Adair BD, Burns JW, Milligan RA, Buchmeier MJ, Yeager M. Complementarity in the supramolecular design of arenaviruses and retroviruses revealed by electron cryomicroscopy and image analysis. J Virol. 2005;79(6):3822–30. https://doi.org/10.1128/JVI.79.6.3822-3830.2005.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang H, Machesky NJ, Mansky LM. Both the PPPY and PTAP motifs are involved in human T-Cell leukemia virus Type 1 particle release. J Virol. 2004;78(3):1503–12. https://doi.org/10.1128/JVI.78.3.1503-1512.2004.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liang J, et al. Angiomotin counteracts the negative regulatory effect of host WWOX on viral PPxY-mediated egress. J Virol. 2021;95(8):e00121-e221. https://doi.org/10.1128/JVI.00121-21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Urata S, Noda T, Kawaoka Y, Yokosawa H, Yasuda J. Cellular factors required for Lassa virus budding. J Virol. 2006;80(8):4191–5. https://doi.org/10.1128/jvi.80.8.4191-4195.2006.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Han Z, et al. Small-molecule probes targeting the viral PPxY-host Nedd4 interface block egress of a broad range of RNA viruses. J Virol. 2014;88(13):7294–306. https://doi.org/10.1128/jvi.00591-14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perez M, Craven RC, de la Torre JC. The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc Natl Acad Sci U S A. 2003;100(22):12978–83. https://doi.org/10.1073/pnas.2133782100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fehling SK, et al. The microtubule motor protein KIF13A is involved in intracellular trafficking of the Lassa virus matrix protein Z. Cell Microbiol. 2013;15(2):315–34. https://doi.org/10.1111/cmi.12095.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Takamatsu Y, Kajikawa J, Muramoto Y, Nakano M, Noda T. Microtubule-dependent transport of arenavirus matrix protein demonstrated using live-cell imaging microscopy. Microscopy. 2019;68(6):450–6. https://doi.org/10.1093/jmicro/dfz034.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cornu TI, de la Torre JC. RING finger Z protein of lymphocytic choriomeningitis virus (LCMV) inhibits transcription and RNA replication of an LCMV S-segment minigenome. J Virol. 2001;75(19):9415–26. https://doi.org/10.1128/JVI.75.19.9415-9426.2001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jácamo R, López N, Wilda M, Franze-Fernández MT. Tacaribe virus Z protein interacts with the L polymerase protein to inhibit viral RNA synthesis. J Virol. 2003;77(19):10383–93. https://doi.org/10.1128/jvi.77.19.10383-10393.2003.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shtanko O, et al. A role for the C terminus of Mopeia virus nucleoprotein in its incorporation into Z protein-induced virus-like particles. J Virol. 2010;84(10):5415–22. https://doi.org/10.1128/jvi.02417-09.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levingston Macleod JM, D’Antuono A, Loureiro ME, Casabona JC, Gomez GA, Lopez N. Identification of two functional domains within the arenavirus nucleoprotein. J Virol. 2011;85(5):2012–23. https://doi.org/10.1128/jvi.01875-10.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sänger L, et al. RNA to rule them all: critical steps in Lassa Virus ribonucleoparticle assembly and recruitment. J Am Chem Soc. 2023;145(51):27958–74. https://doi.org/10.1021/jacs.3c07325.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cornu TI, de la Torre JC. Characterization of the arenavirus RING finger Z protein regions required for Z-mediated inhibition of viral RNA synthesis. J Virol. 2002;76(13):6678–88. https://doi.org/10.1128/jvi.76.13.6678-6688.2002.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cornu TI, Feldmann H, de la Torre JC. Cells expressing the RING finger Z protein are resistant to arenavirus infection. J Virol. 2004;78(6):2979–83. https://doi.org/10.1128/jvi.78.6.2979-2983.2004.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kranzusch PJ, Whelan SPJ. Arenavirus Z protein controls viral RNA synthesis by locking a polymerase–promoter complex. Proc Natl Acad Sci. 2011;108(49):19743–8. https://doi.org/10.1073/pnas.1112742108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu X, et al. Cryo-EM structures of Lassa and Machupo virus polymerases complexed with cognate regulatory Z proteins identify targets for antivirals. Nat Microbiol. 2021. https://doi.org/10.1038/s41564-021-00916-w.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peng R, et al. Structural insight into arenavirus replication machinery. Nature. 2020;579(7800):615–9. https://doi.org/10.1038/s41586-020-2114-2.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Capul AA, de la Torre JC, Buchmeier MJ. Conserved residues in lassa fever virus Z protein modulate viral infectivity at the level of the ribonucleoprotein. J Virol. 2011;85(7):3172–8. https://doi.org/10.1128/jvi.02081-10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sakuma T, Noda T, Urata S, Kawaoka Y, Yasuda J. Inhibition of Lassa and Marburg virus production by tetherin. J Virol. 2009;83(5):2382–5. https://doi.org/10.1128/jvi.01607-08.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Radoshitzky SR, et al. Infectious Lassa virus, but not filoviruses, is restricted by BST-2/tetherin. J Virol. 2010;84(20):10569–80. https://doi.org/10.1128/jvi.00103-10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fan L, Briese T, Lipkin WI. Z proteins of new world arenaviruses bind RIG-I and interfere with type I interferon induction. J Virol. 2010;84(4):1785–91. https://doi.org/10.1128/jvi.01362-09.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xing J, Ly H, Liang Y. The Z proteins of pathogenic but not nonpathogenic arenaviruses inhibit RIG-i-like receptor-dependent interferon production. J Virol. 2015;89(5):2944–55. https://doi.org/10.1128/jvi.03349-14.

    Article 
    PubMed 

    Google Scholar 

  • Di D, Huang Q, Ly H, Liang Y. Evaluating the biological role of Lassa viral Z protein-mediated RIG-I inhibition using a replication-competent Trisegmented Pichinde virus system in an inducible RIG-IN expression cell line. J Virol. 2022;96(16):e00754-e822. https://doi.org/10.1128/jvi.00754-22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang Q, Liu X, Brisse M, Ly H, Liang Y. Effect of strain variations on Lassa virus Z protein-mediated human RIG-I inhibition. Viruses. 2020;12(9):907. https://doi.org/10.3390/v12090907.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guan D, Kao H-Y. The function, regulation and therapeutic implications of the tumor suppressor protein, PML. Cell Biosci. 2015;5:60–60. https://doi.org/10.1186/s13578-015-0051-9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borden KL, Campbell Dwyer EJ, Salvato MS. An arenavirus RING (zinc-binding) protein binds the oncoprotein promyelocyte leukemia protein (PML) and relocates PML nuclear bodies to the cytoplasm. J Virol. 1998;72(1):758–66. https://doi.org/10.1128/JVI.72.1.758-766.1998.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borden KL, CampbellDwyer EJ, Salvato MS. The promyelocytic leukemia protein PML has a pro-apoptotic activity mediated through its RING domain. FEBS Lett. 1997;418(1–2):30–4. https://doi.org/10.1016/s0014-5793(97)01344-6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borden KLB, CampbellDwyer EJ, Carlile GW, Djavani M, Salvato MS. Two RING finger proteins, the Oncoprotein PML and the arenavirus Z protein, colocalize with the nuclear fraction of the ribosomal P proteins. J Virol. 1998;72(5):3819–26. https://doi.org/10.1128/jvi.72.5.3819-3826.1998.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Djavani M, et al. Role of the promyelocytic leukemia protein PML in the interferon sensitivity of lymphocytic choriomeningitis virus. J Virol. 2001;75(13):6204–8. https://doi.org/10.1128/jvi.75.13.6204-6208.2001.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Asper M, et al. Inhibition of different Lassa virus strains by alpha and gamma interferons and comparison with a less pathogenic arenavirus. J Virol. 2004;78(6):3162–9. https://doi.org/10.1128/jvi.78.6.3162-3169.2004.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Topcu Z, Mack DL, Hromas RA, Borden KL. The promyelocytic leukemia protein PML interacts with the proline-rich homeodomain protein PRH: a RING may link hematopoiesis and growth control. Oncogene. 1999;18(50):7091–100.

    CAS 
    PubMed 

    Google Scholar 

  • Djavani M, et al. The proline-rich homeodomain (PRH/HEX) protein is down-regulated in liver during infection with lymphocytic choriomeningitis virus. J Virol. 2005;79(4):2461–73. https://doi.org/10.1128/JVI.79.4.2461-2473.2005.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kentsis A, et al. The RING domains of the promyelocytic leukemia protein PML and the arenaviral protein Z repress translation by directly inhibiting translation initiation factor eIF4E11Edited by D. Draper. J Mol Biol. 2001;312(4):609–23. https://doi.org/10.1006/jmbi.2001.5003.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rosenthal M, et al. Structural insights into reptarenavirus cap-snatching machinery. PLoS Pathog. 2017;13(5):e1006400. https://doi.org/10.1371/journal.ppat.1006400.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olschewski S, Cusack S, Rosenthal M. The cap-snatching mechanism of bunyaviruses. Trends Microbiol. 2020;28(4):293–303. https://doi.org/10.1016/j.tim.2019.12.006.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vogel D, Rosenthal M, Gogrefe N, Reindl S, Günther S. Biochemical characterization of the Lassa virus L protein. J Biol Chem. 2019;294(20):8088–100. https://doi.org/10.1074/jbc.RA118.006973.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Urata S, de la Torre JC. Arenavirus budding. Advances in Virology. 2011;2011:180326. https://doi.org/10.1155/2011/180326.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baillet N, et al. Autophagy promotes infectious particle production of mopeia and Lassa viruses. Viruses. 2019;11(3):293. https://doi.org/10.3390/v11030293.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roldán JS, Candurra NA, Colombo MI, Delgui LR. Junín virus promotes autophagy to facilitate the virus life cycle. J Virol. 2019;93(15):e02307-e2318. https://doi.org/10.1128/JVI.02307-18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lukashevich IS, et al. The Lassa fever virus L gene: nucleotide sequence, comparison, and precipitation of a predicted 250 kDa protein with monospecific antiserum. J Gen Virol. 1997;78(3):547–51.

    CAS 
    PubMed 

    Google Scholar 

  • Ishihama A, Barbier P. Molecular anatomy of viral RNA-directed RNA polymerases. Arch Virol. 1994;134(3–4):235–58. https://doi.org/10.1007/bf01310564.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kolakofsky D, Hacker D. Bunyavirus RNA synthesis: genome transcription and replication. Curr Top Microbiol Immunol. 1991;169:143–59. https://doi.org/10.1007/978-3-642-76018-1_5.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chizhikov VE, Spiropoulou CF, Morzunov SP, Monroe MC, Peters CJ, Nichol ST. Complete genetic characterization and analysis of isolation of Sin Nombre virus. J Virol. 1995;69(12):8132–6. https://doi.org/10.1128/jvi.69.12.8132-8136.1995.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poch O, Blumberg BM, Bougueleret L, Tordo N. Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. J Gen Virol. 1990;71(Pt 5):1153–62. https://doi.org/10.1099/0022-1317-71-5-1153.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Müller R, Poch O, Delarue M, Bishop DH, Bouloy M. Rift Valley fever virus L segment: correction of the sequence and possible functional role of newly identified regions conserved in RNA-dependent polymerases. J Gen Virol. 1994;75(Pt 6):1345–52. https://doi.org/10.1099/0022-1317-75-6-1345.

    Article 
    PubMed 

    Google Scholar 

  • Kuhn JH, et al. 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Arch Virol. 2020;165:1–50.

    Google Scholar 

  • Jiang X-M, et al. Regulation of the WNT-CTNNB1 signaling pathway by severe fever with thrombocytopenia syndrome virus in a cap-snatching manner. MBio. 2023;14(6):e01688-e1723. https://doi.org/10.1128/mbio.01688-23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vieth S, Torda AE, Asper M, Schmitz H, Günther S. Sequence analysis of L RNA of Lassa virus. Virology. 2004;318(1):153–68. https://doi.org/10.1016/j.virol.2003.09.009.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brunotte L, Lelke M, Hass M, Kleinsteuber K, Becker-Ziaja B, Günther S. Domain structure of Lassa virus L protein. J Virol. 2011;85(1):324. https://doi.org/10.1128/JVI.00721-10.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lehmann M, Pahlmann M, Jérôme H, Busch C, Lelke M, Günther S. Role of the C terminus of Lassa virus L protein in viral mRNA synthesis. J Virol. 2014;88(15):8713–7.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lelke M, Brunotte L, Busch C, Günther S. An N-terminal region of Lassa virus L protein plays a critical role in transcription but not replication of the virus genome. J Virol. 2010;84(4):1934–44.

    CAS 
    PubMed 

    Google Scholar 

  • Kouba T, et al. Conformational changes in Lassa virus L protein associated with promoter binding and RNA synthesis activity. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-27305-5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang H, et al. Structural basis for recognition and regulation of arenavirus polymerase L by Z protein. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-24458-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saez-Ayala M, et al. Metal chelators for the inhibition of the lymphocytic choriomeningitis virus endonuclease domain. Antiviral Res. 2019;162:79–89. https://doi.org/10.1016/j.antiviral.2018.12.008.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Taoda Y, et al. Structure-activity relationship studies of anti-bunyaviral cap-dependent endonuclease inhibitors. Bioorg Med Chem Lett. 2023;83:129175. https://doi.org/10.1016/j.bmcl.2023.129175.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hass M, Lelke M, Busch C, Becker-Ziaja B, Günther S. Mutational evidence for a structural model of the Lassa virus RNA polymerase domain and identification of two residues, Gly1394 and Asp1395, that are critical for transcription but not replication of the genome. J Virol. 2008;82(20):10207. https://doi.org/10.1128/JVI.00220-08.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moshkoff DA, Salvato MS, Lukashevich IS. Molecular characterization of a reassortant virus derived from Lassa and Mopeia viruses. Virus Genes. 2007;34(2):169–76. https://doi.org/10.1007/s11262-006-0050-3.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lukashevich I. Generation of reassortants between African arenaviruses. Virology. 1992;188(2):600–5.

    CAS 
    PubMed 

    Google Scholar 

  • Riviere Y, Oldstone MB. Genetic reassortants of lymphocytic choriomeningitis virus: unexpected disease and mechanism of pathogenesis. J Virol. 1986;59(2):363–8. https://doi.org/10.1128/jvi.59.2.363-368.1986.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Riviere Y, Ahmed R, Southern PJ, Buchmeier MJ, Oldstone MB. Genetic mapping of lymphocytic choriomeningitis virus pathogenicity: virulence in guinea pigs is associated with the L RNA segment. J Virol. 1985;55(3):704–9. https://doi.org/10.1128/jvi.55.3.704-709.1985.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Djavani M, Lukashevich IS, Salvato MS. Sequence comparison of the large genomic RNA segments of two strains of lymphocytic choriomeningitis virus differing in pathogenic potential for guinea pigs. Virus Genes. 1998;17(2):151–5. https://doi.org/10.1023/a:1008016724243.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taniguchi S, Saito T, Paroha R, Huang C, Paessler S, Maruyama J. Unraveling factors responsible for pathogenic differences in Lassa virus strains. bioRxiv. 2024. https://doi.org/10.1101/2024.05.21.595091.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCormick JB, et al. Lassa fever. N Engl J Med. 1986;314(1):20–6. https://doi.org/10.1056/NEJM198601023140104.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jahrling P, Hesse R, Eddy G, Johnson K, Callis R, Stephen E. Lassa virus infection of rhesus monkeys: pathogenesis and treatment with ribavirin. J Infect Dis. 1980;141(5):580–9.

    CAS 
    PubMed 

    Google Scholar 

  • Ortiz-Riaño E, Cheng BY, de la Torre JC, Martínez-Sobrido L. The C-terminal region of lymphocytic choriomeningitis virus nucleoprotein contains distinct and segregable functional domains involved in NP-Z interaction and counteraction of the type I interferon response. J Virol. 2011;85(24):13038–48. https://doi.org/10.1128/jvi.05834-11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qi X, et al. Cap binding and immune evasion revealed by Lassa nucleoprotein structure. Nature. 2010;468(7325):779–83. https://doi.org/10.1038/nature09605.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martínez-Sobrido L, Giannakas P, Cubitt B, García-Sastre A, de la Torre JC. Differential inhibition of type I interferon induction by arenavirus nucleoproteins. J Virol. 2007;81(22):12696–703. https://doi.org/10.1128/jvi.00882-07.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Papageorgiou N, et al. Brothers in arms: structure, assembly and function of arenaviridae nucleoprotein. Viruses. 2020. https://doi.org/10.3390/v12070772.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lennartz F, Hoenen T, Lehmann M, Groseth A, Garten W. The role of oligomerization for the biological functions of the arenavirus nucleoprotein. Arch Virol. 2013;158(9):1895–905. https://doi.org/10.1007/s00705-013-1684-9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martínez-Sobrido L, Paessler S, de la Torre JC. Lassa virus reverse genetics. Methods Mol Biol. 2017;1602:185–204. https://doi.org/10.1007/978-1-4939-6964-7_13.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Johnson DM, Cubitt B, Pfeffer TL, de La Torre JC, Lukashevich IS. Lassa virus vaccine candidate ML29 generates truncated viral RNAs which contribute to interfering activity and attenuation. Viruses. 2021;13(2):214.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pinschewer DD, Perez M, de la Torre JC. Role of the virus nucleoprotein in the regulation of lymphocytic choriomeningitis virus transcription and RNA replication. J Virol. 2003;77(6):3882–7. https://doi.org/10.1128/jvi.77.6.3882-3887.2003.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nilsson-Payant BE, et al. Reduced nucleoprotein availability impairs negative-sense RNA virus replication and promotes host recognition. J Virol. 2021;95(9):e02274-e2320. https://doi.org/10.1128/JVI.02274-20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hastie KM, et al. Crystal structure of the Lassa virus nucleoprotein–RNA complex reveals a gating mechanism for RNA binding. Proc Natl Acad Sci. 2011;108(48):19365. https://doi.org/10.1073/pnas.1108515108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pattis JG, May ER. Markov state model of Lassa virus nucleoprotein reveals large structural changes during the trimer to monomer transition. Structure. 2020;28(5):548-554.e3. https://doi.org/10.1016/j.str.2020.03.002.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Byford O, et al. Lymphocytic choriomeningitis arenavirus utilises intercellular connections for cell to cell spread. Sci Rep. 2024;14(1):28961. https://doi.org/10.1038/s41598-024-79397-w.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sakabe S, Witwit H, Khafaji R, Cubitt B, de la Torre JC. Chaperonin TRiC/CCT participates in mammarenavirus multiplication in human cells via interaction with the viral nucleoprotein. J Virol. 2023;97(2):e01688-e1722. https://doi.org/10.1128/jvi.01688-22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trinchieri G. Lymphocyte choriomeningitis virus plays hide-and-seek with type 1 interferon. Cell Host Microbe. 2012;11(6):553–5. https://doi.org/10.1016/j.chom.2012.05.007.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Borrow P, Martínez-Sobrido L, de la Torre JC. Inhibition of the type I interferon antiviral response during arenavirus infection. Viruses. 2010;2(11):2443–80. https://doi.org/10.3390/v2112443.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martínez-Sobrido L, Zúñiga EI, Rosario D, García-Sastre A, de la Torre JC. Inhibition of the type I interferon response by the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol. 2006;80(18):9192–9. https://doi.org/10.1128/jvi.00555-06.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson DM, et al. Pathogenic and apathogenic strains of lymphocytic choriomeningitis virus have distinct entry and innate immune activation pathways. Viruses. 2024;16(4):635.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martínez-Sobrido L, Emonet S, Giannakas P, Cubitt B, García-Sastre A, de la Torre JC. Identification of amino acid residues critical for the anti-interferon activity of the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol. 2009;83(21):11330–40. https://doi.org/10.1128/JVI.00763-09.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou S, Cerny AM, Zacharia A, Fitzgerald KA, Kurt-Jones EA, Finberg RW. Induction and inhibition of type I interferon responses by distinct components of lymphocytic choriomeningitis virus. J Virol. 2010;84(18):9452–62. https://doi.org/10.1128/jvi.00155-10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • King BR, et al. A map of the arenavirus nucleoprotein-host protein interactome reveals that Junín virus selectively impairs the antiviral activity of double-stranded RNA-activated protein kinase (PKR). J Virol. 2017. https://doi.org/10.1128/jvi.00763-17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang C, Kolokoltsova OA, Mateer EJ, Koma T, Paessler S. Highly pathogenic new world arenavirus infection activates the pattern recognition receptor protein kinase R without attenuating virus replication in human cells. J Virol. 2017. https://doi.org/10.1128/jvi.01090-17.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mateer EJ, Maruyama J, Card GE, Paessler S, Huang C. Lassa virus, but not highly pathogenic new world arenaviruses, restricts immunostimulatory double-stranded RNA accumulation during infection. J Virol. 2020;94(9):e02006-e2019. https://doi.org/10.1128/jvi.02006-19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hastie KM, Kimberlin CR, Zandonatti MA, MacRae IJ, Saphire EO. Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3′ to 5′ exonuclease activity essential for immune suppression. Proc Natl Acad Sci. 2011;108(6):2396–401. https://doi.org/10.1073/pnas.1016404108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang X, et al. Structures of arenaviral nucleoproteins with triphosphate dsRNA reveal a unique mechanism of immune suppression. J Biol Chem. 2013;288(23):16949–59.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mateer EJ, Paessler S, Huang C. Visualization of double-stranded RNA colocalizing with pattern recognition receptors in arenavirus infected cells. Front Cell Infect Microbiol. 2018;8:251. https://doi.org/10.3389/fcimb.2018.00251.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pythoud C, et al. Arenavirus nucleoprotein targets interferon regulatory factor-activating kinase IKKε. J Virol. 2012;86(15):7728–38. https://doi.org/10.1128/JVI.00187-12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Loureiro ME, et al. DDX3 suppresses type I interferons and favors viral replication during Arenavirus infection. PLoS Pathog. 2018;14(7):e1007125–e1007125. https://doi.org/10.1371/journal.ppat.1007125.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oever BR, et al. Activation of TBK1 and IKKvarepsilon kinases by vesicular stomatitis virus infection and the role of viral ribonucleoprotein in the development of interferon antiviral immunity. J Virol. 2004;78(19):10636–49. https://doi.org/10.1128/JVI.78.19.10636-10649.2004.

    Article 
    CAS 

    Google Scholar 

  • Soulat D, et al. The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. Embo j. 2008;27(15):2135–46. https://doi.org/10.1038/emboj.2008.126.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gu L, Fullam A, Brennan R, Schröder M. Human DEAD box helicase 3 couples IκB kinase ε to interferon regulatory factor 3 activation. Mol Cell Biol. 2013;33(10):2004–15. https://doi.org/10.1128/MCB.01603-12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodrigo WSI, Ortiz-Riaño E, Pythoud C, Kunz S, Juan C, Martínez-Sobrido L. Arenavirus nucleoproteins prevent activation of nuclear factor kappa B. J Virol. 2012;86(15):8185–97.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Meyer B, Groseth A. Apoptosis during arenavirus infection: mechanisms and evasion strategies. Microbes Infect. 2018;20(2):65–80. https://doi.org/10.1016/j.micinf.2017.10.002.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wolff S, Becker S, Groseth A. Cleavage of the Junin virus nucleoprotein serves a decoy function to inhibit the induction of apoptosis during infection. J Virol. 2013;87(1):224–33. https://doi.org/10.1128/jvi.01929-12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clegg JC, Lloyd G. Structural and cell-associated proteins of Lassa virus. J Gen Virol. 1983;64(Pt 5):1127–36. https://doi.org/10.1099/0022-1317-64-5-1127.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hastie KM, Saphire EO. Lassa virus glycoprotein: stopping a moving target. Curr Opin Virol. 2018;31:52–8. https://doi.org/10.1016/j.coviro.2018.05.002.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Torriani G, Galan-Navarro C, Kunz S. Lassa virus cell entry reveals new aspects of virus-host cell interaction. J Virol. 2017;91(4):e01902-e1916. https://doi.org/10.1128/JVI.01902-16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Igonet S, et al. X-ray structure of the arenavirus glycoprotein GP2 in its postfusion hairpin conformation. Proc Natl Acad Sci. 2011;108(50):19967. https://doi.org/10.1073/pnas.1108910108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gallaher WR, DiSimone C, Buchmeier MJ. The viral transmembrane superfamily: possible divergence of Arenavirus and Filovirus glycoproteins from a common RNA virus ancestor. BMC Microbiol. 2001;1(1):1.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klewitz C, Klenk H-D, ter Meulen J. Amino acids from both N-terminal hydrophobic regions of the Lassa virus envelope glycoprotein GP-2 are critical for pH-dependent membrane fusion and infectivity. J Gen Virol. 2007;88(8):2320–8.

    CAS 
    PubMed 

    Google Scholar 

  • Nunberg JH, York J. The curious case of arenavirus entry, and its inhibition. Viruses. 2012;4(1):83–101.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saunders AA, et al. Mapping the landscape of the lymphocytic choriomeningitis virus stable signal peptide reveals novel functional domains. J Virol. 2007;81(11):5649. https://doi.org/10.1128/JVI.02759-06.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eichler R, Lenz O, Strecker T, Garten W. Signal peptide of Lassa virus glycoprotein GP-C exhibits an unusual length. FEBS Lett. 2003;538(1–3):203–6. https://doi.org/10.1016/S0014-5793(03)00160-1.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eichler R, Lenz O, Strecker T, Eickmann M, Klenk H-D, Garten W. Identification of Lassa virus glycoprotein signal peptide as a trans-acting maturation factor. EMBO Rep. 2003;4(11):1084–8. https://doi.org/10.1038/sj.embor.embor7400002.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lenz O, ter Meulen J, Klenk H-D, Seidah NG, Garten W. The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc Natl Acad Sci. 2001;98(22):12701–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gorzkiewicz M, Cramer J, Xu HC, Lang PA. The role of glycosylation patterns of viral glycoproteins and cell entry receptors in arenavirus infection. Biomed Pharmacother. 2023;166:115196. https://doi.org/10.1016/j.biopha.2023.115196.

    Article 
    PubMed 

    Google Scholar 

  • Yang Z, Duckers HJ, Sullivan NJ, Sanchez A, Nabel EG, Nabel GJ. Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nat Med. 2000;6(8):886–9. https://doi.org/10.1038/78654.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lukashevich IS, et al. Lassa and mopeia virus replication in human monocytes/macrophages and in endothelial cells: different effects on IL-8 and TNF-α gene expression. J Med Virol. 1999;59(4):552–60.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCormick JB, Fisher-Hoch SP. Lassa fever. In: Oldstone MBA, editor. Arenaviruses I: the epidemiology, molecular and cell biology of arenaviruses. Berlin, Heidelberg: Springer Berlin Heidelberg; 2002. p. 75–109. https://doi.org/10.1007/978-3-642-56029-3_4.

    Chapter 

    Google Scholar 

  • Li S, et al. Acidic pH-induced conformations and LAMP1 binding of the Lassa virus glycoprotein spike. PLoS Pathog. 2016;12(2):e1005418–e1005418. https://doi.org/10.1371/journal.ppat.1005418.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao W, et al. Identification of α-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science. 1998;282(5396):2079–81.

    CAS 
    PubMed 

    Google Scholar 

  • Jae LT, et al. Deciphering the glycosylome of dystroglycanopathies using haploid screens for lassa virus entry. Science. 2013;340(6131):479–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shimojima M, Ströher U, Ebihara H, Feldmann H, Kawaoka Y. Identification of cell surface molecules involved in dystroglycan-independent Lassa virus cell entry. J Virol. 2012;86(4):2067. https://doi.org/10.1128/JVI.06451-11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Warner NL, Jokinen JD, Beier JI, Sokoloski KJ, Lukashevich IS. Mammarenaviral infection is dependent on directional exposure to and release from polarized intestinal epithelia. Viruses. 2018;10(2):75.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Goncalves A-R, Moraz M-L, Pasquato A, Helenius A, Lozach P-Y, Kunz S. Role of DC-SIGN in Lassa virus entry into human dendritic cells. J Virol. 2013;87(21):11504–15.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bakkers MJG, et al. CD164 is a host factor for lymphocytic choriomeningitis virus entry. Proc Natl Acad Sci U S A. 2022;119(10):e2119676119. https://doi.org/10.1073/pnas.2119676119.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Volland A, Lohmüller M, Heilmann E, Kimpel J, Herzog S, von Laer D. Heparan sulfate proteoglycans serve as alternative receptors for low affinity LCMV variants. PLoS Pathog. 2021;17(10):e1009996. https://doi.org/10.1371/journal.ppat.1009996.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oppliger J, Torriani G, Herrador A, Kunz S. Lassa virus cell entry via dystroglycan involves an unusual pathway of macropinocytosis. J Virol. 2016;90(14):6412. https://doi.org/10.1128/JVI.00257-16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jae LT, et al. Lassa virus entry requires a trigger-induced receptor switch. Science. 2014;344(6191):1506. https://doi.org/10.1126/science.1252480.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cohen-Dvashi H, Israeli H, Shani O, Katz A, Diskin R. Role of LAMP1 binding and pH sensing by the spike complex of Lassa virus. J Virol. 2016;90(22):10329. https://doi.org/10.1128/JVI.01624-16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hastie KM, et al. Structural basis for antibody-mediated neutralization of Lassa virus. Science. 2017;356(6341):923. https://doi.org/10.1126/science.aam7260.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perrett HR, et al. Structural conservation of Lassa virus glycoproteins and recognition by neutralizing antibodies. Cell Rep. 2023;42(5):112524. https://doi.org/10.1016/j.celrep.2023.112524.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cai Y, et al. A Lassa Virus live-attenuated vaccine candidate based on rearrangement of the intergenic region. MBio. 2020;11(2):e00186-e220. https://doi.org/10.1128/mBio.00186-20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bergeron É, et al. Reverse genetics recovery of Lujo virus and role of virus RNA secondary structures in efficient virus growth. J Virol. 2012;86(19):10759. https://doi.org/10.1128/JVI.01144-12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Golden JW, et al. An attenuated Machupo virus with a disrupted L-segment intergenic region protects guinea pigs against lethal Guanarito virus infection. Sci Rep. 2017;7(1):4679. https://doi.org/10.1038/s41598-017-04889-x.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pinschewer DD, Perez M, de la Torre JC. Dual role of the lymphocytic choriomeningitis virus intergenic region in transcription termination and virus propagation. J Virol. 2005;79(7):4519. https://doi.org/10.1128/JVI.79.7.4519-4526.2005.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vera-Otarola J, Soto-Rifo R, Ricci EP, Ohlmann T, Darlix J-L, López-Lastra M. The 3′ untranslated region of the andes hantavirus small mRNA functionally replaces the poly(A) tail and stimulates cap-dependent translation initiation from the viral mRNA. J Virol. 2010;84(19):10420. https://doi.org/10.1128/JVI.01270-10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meyer BJ, Southern PJ. Concurrent sequence analysis of 5’ and 3’ RNA termini by intramolecular circularization reveals 5’ nontemplated bases and 3’ terminal heterogeneity for lymphocytic choriomeningitis virus mRNAs. J Virol. 1993;67(5):2621.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iwasaki M, Ngo N, Cubitt B, Teijaro JR, de la Torre JC. General molecular strategy for development of arenavirus live-attenuated vaccines. J Virol. 2015;89(23):12166. https://doi.org/10.1128/JVI.02075-15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iwasaki M, Cubitt B, Sullivan BM, de la Torre JC. The high degree of sequence plasticity of the arenavirus noncoding intergenic region (IGR) enables the use of a nonviral universal synthetic IGR to attenuate arenaviruses. J Virol. 2016;90(6):3187. https://doi.org/10.1128/JVI.03145-15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hass M, Westerkofsky M, Müller S, Becker-Ziaja B, Busch C, Günther S. Mutational analysis of the Lassa virus promoter. J Virol. 2006;80(24):12414. https://doi.org/10.1128/JVI.01374-06.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perez M, de la Torre JC. Characterization of the genomic promoter of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol. 2003;77(2):1184. https://doi.org/10.1128/JVI.77.2.1184-1194.2003.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hashizume M, Takashima A, Iwasaki M. A small stem-loop-forming region within the 3′-UTR of a nonpolyadenylated LCMV mRNA promotes translation. J Biol Chem. 2022;298(2): 101576. https://doi.org/10.1016/j.jbc.2022.101576.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marq J-B, Kolakofsky D, Garcin D. Unpaired 5’ ppp-nucleotides, as found in arenavirus double-stranded RNA panhandles, are not recognized by RIG-I. J Biol Chem. 2010;285(24):18208–16. https://doi.org/10.1074/jbc.M109.089425.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klitting R, et al. Lassa virus genetics. Berlin, Heidelberg: Springer, Berlin Heidelberg; 2020. p. 1–43.

    Google Scholar 

  • Marq J-B, Hausmann S, Veillard N, Kolakofsky D, Garcin D. Short double-stranded RNAs with an overhanging 5’ ppp-nucleotide, as found in arenavirus genomes, act as RIG-I decoys. J Biol Chem. 2011;286(8):6108–16. https://doi.org/10.1074/jbc.M110.186262.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • D’Antuono AL, et al. cis-Acting element at the 5’ noncoding region of tacaribe virus S RNA modulates genome replication. J Virol. 2023;97(3):e00125-e223. https://doi.org/10.1128/jvi.00125-23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taniguchi S, et al. Characterization of the untranslated region of lymphocytic choriomeningitis virus S segment. bioRxiv. 2019. https://doi.org/10.1101/653808.

    Article 

    Google Scholar 

  • Walker DH, et al. Pathologic and virologic study of fatal Lassa fever in man. Am J Pathol. 1982;107(3):349–56.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moraz M-L, Kunz S. Pathogenesis of arenavirus hemorrhagic fevers. Expert Rev Anti Infect Ther. 2011;9(1):49–59.

    PubMed 

    Google Scholar 

  • Fisher-Hoch SP, Mitchell SW, Sasso DR, Lange JV, Ramsey R, McCormick JB. Physiological and immunologic disturbances associated with shock in a primate model of Lassa fever. J Infect Dis. 1987;155(3):465–74. https://doi.org/10.1093/infdis/155.3.465.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marty AM, Jahrling PB, Geisbert TW. Viral hemorrhagic fevers. Clin Lab Med. 2006;26(2):345–86.

    PubMed 

    Google Scholar 

  • Geisbert TW, Jahrling PB. Exotic emerging viral diseases: progress and challenges. Nat Med. 2004;10(12):S110–21. https://doi.org/10.1038/nm1142.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Callis RT, Jahrling PB, DePaoli A. Pathology of Lassa virus infection in the rhesus monkey. Am J Trop Med Hyg. 1982;31(5):1038–45. https://doi.org/10.4269/ajtmh.1982.31.1038.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hensley LE, et al. Pathogenesis of Lassa fever in cynomolgus macaques. Virol J. 2011;8:205–205. https://doi.org/10.1186/1743-422X-8-205.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lange JV, Mitchell SW, McCormick JB, Walker DH, Evatt BL, Ramsey RR. Kinetic study of platelets and fibrinogen in lassa virus-infected monkeys and early pathologic events in mopeia virus-infected monkeys. Am J Trop Med Hyg. 1985;34(5):999–1007. https://doi.org/10.4269/ajtmh.1985.34.999.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carrion R, et al. Lassa virus infection in experimentally infected marmosets: liver pathology and immunophenotypic alterations in target tissues. J Virol. 2007;81(12):6482. https://doi.org/10.1128/JVI.02876-06.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahanty S, Hutchinson K, Agarwal S, Mcrae M, Rollin PE, Pulendran B. Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses. J Immunol. 2003;170(6):2797–801.

    CAS 
    PubMed 

    Google Scholar 

  • Baize S, Kaplon J, Faure C, Pannetier D, Georges-Courbot M-C, Deubel V. Lassa virus infection of human dendritic cells and macrophages is productive but fails to activate cells. J Immunol. 2004;172(5):2861. https://doi.org/10.4049/jimmunol.172.5.2861.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pannetier D, et al. Human dendritic cells infected with the nonpathogenic mopeia virus induce stronger T-cell responses than those infected with Lassa virus. J Virol. 2011;85(16):8293. https://doi.org/10.1128/JVI.02120-10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahanty S, et al. Low levels of interleukin-8 and interferon-inducible protein–10 in serum are associated with fatal infections in acute Lassa fever. J Infect Dis. 2001;183(12):1713–21.

    CAS 
    PubMed 

    Google Scholar 

  • Hayes M, Salvato M. Arenavirus evasion of host anti-viral responses. Viruses. 2012. https://doi.org/10.3390/v4102182.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou S, et al. MyD88 is critical for the development of innate and adaptive immunity during acute lymphocytic choriomeningitis virus infection. Eur J Immunol. 2005;35(3):822–30.

    CAS 
    PubMed 

    Google Scholar 

  • Zhou S, et al. Lymphocytic choriomeningitis virus (LCMV) infection of CNS glial cells results in TLR2-MyD88/Mal-dependent inflammatory responses. J Neuroimmunol. 2008;194(1–2):70–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fisher-Hoch SP, McCormick JB. Towards a human Lassa fever vaccine. Rev Med Virol. 2001;11(5):331–41. https://doi.org/10.1002/rmv.329.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fisher-Hoch SP, McCormick JB. Lassa fever vaccine. Expert Rev Vaccines. 2004;3(2):189–97.

    CAS 
    PubMed 

    Google Scholar 

  • McCormick J, Mitchell S, Kiley M, Ruo S, Fisher-Hoch S. Inactivated Lassa virus elicits a non protective immune response in rhesus monkeys. J Med Virol. 1992;37(1):1–7.

    CAS 
    PubMed 

    Google Scholar 

  • Lukashevich IS. Advanced vaccine candidates for Lassa fever. Viruses. 2012. https://doi.org/10.3390/v4112514.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • LaVergne SM, et al. Expansion of CD8+ T cell population in Lassa virus survivors with low T cell precursor frequency reveals durable immune response in most survivors. PLoS Negl Trop Dis. 2022;16(11):e0010882. https://doi.org/10.1371/journal.pntd.0010882.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • ter Meulen J, et al. Old and new world arenaviruses share a highly conserved epitope in the fusion domain of the glycoprotein 2, which is recognized by Lassa virus-specific human CD4+ T-cell clones. Virology. 2004;321(1):134–43.

    CAS 
    PubMed 

    Google Scholar 

  • ter Meulen J, et al. Characterization of human CD4+ T-cell clones recognizing conserved and variable epitopes of the Lassa virus nucleoprotein. J Virol. 2000;74(5):2186–92.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Boesen A, Sundar K, Coico R. Lassa fever virus peptides predicted by computational analysis induce epitope-specific cytotoxic-T-lymphocyte responses in HLA-A2. 1 transgenic mice. Clin Diagn Lab Immunol. 2005;12(10):1223–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Botten J, et al. Identification of protective Lassa virus epitopes that are restricted by HLA-A2. J Virol. 2006;80(17):8351–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Botten J, et al. A multivalent vaccination strategy for the prevention of old world arenavirus infection in humans. J Virol. 2010;84(19):9947–56.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu F, Feuer R, Hassett DE, Whitton JL. Peptide vaccination of mice immune to LCMV or vaccinia virus causes serious CD8+ T cell-mediated, TNF-dependent immunopathology. J Clin Investig. 2006;116(2):465–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yun NE, et al. Animal model of sensorineural hearing loss associated with lassa virus infection. J Virol. 2016;90(6):2920. https://doi.org/10.1128/JVI.02948-15.

    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • Cummins D, et al. Acute sensorineural deafness in Lassa fever. JAMA. 1990;264(16):2093–6.

    CAS 
    PubMed 

    Google Scholar 

  • Cashman KA, et al. Immune-mediated systemic vasculitis as the proposed cause of sudden-onset sensorineural hearing loss following Lassa Virus exposure in cynomolgus macaques. MBio. 2018;9(5):e01896-e1918. https://doi.org/10.1128/mBio.01896-18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Platanias LC. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 2005;5(5):375–86. https://doi.org/10.1038/nri1604.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reyna RA, et al. Depletion of CD4 and CD8 T Cells Reduces Acute Disease and Is Not Associated with Hearing Loss in ML29-Infected STAT1-/-Mice. Biomedicines. 2022. https://doi.org/10.3390/biomedicines10102433.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson KM, McCormick JB, Webb PA, Smith ES, Elliott LH, King IJ. Clinical virology of Lassa fever in hospitalized patients. J Infect Dis. 1987;155(3):456–64.

    CAS 
    PubMed 

    Google Scholar 

  • Robinson JE, et al. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits. Nat Commun. 2016;7(1):11544. https://doi.org/10.1038/ncomms11544.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jahrling PB. Protection of lassa virus-infected guinea pigs with lassa-immune plasma of guinea pig, primate, and human origin. J Med Virol. 1983;12(2):93–102. https://doi.org/10.1002/jmv.1890120203.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pushko P, Geisbert J, Parker M, Jahrling P, Smith J. Individual and bivalent vaccines based on alphavirus replicons protect guinea pigs against infection with Lassa and Ebola viruses. J Virol. 2001;75(23):11677–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peters CJ, Jahrling PB, Liu CT, Kenyon RH, McKee KT Jr, Barrera Oro JG. Experimental studies of arenaviral hemorrhagic fevers. Curr Top Microbiol Immunol. 1987;134:5–68. https://doi.org/10.1007/978-3-642-71726-0_2.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oestereich L, Müller-Kräuter H, Pallasch E, Strecker T. Passive transfer of animal-derived polyclonal hyperimmune antibodies provides protection of mice from lethal Lassa virus infection. Viruses. 2023;15(7):1436. https://doi.org/10.3390/v15071436.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frame JD, Verbrugge GP, Gill RG, Pinneo L. The use of Lassa fever convalescent plasma in Nigeria. Trans R Soc Trop Med Hyg. 1984;78(3):319–24. https://doi.org/10.1016/0035-9203(84)90107-X.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mire CE, et al. Human-monoclonal-antibody therapy protects nonhuman primates against advanced Lassa fever. Nat Med. 2017;23(10):1146–9. https://doi.org/10.1038/nm.4396.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cross RW, et al. Antibody therapy for Lassa fever. Curr Opin Virol. 2019;37:97–104. https://doi.org/10.1016/j.coviro.2019.07.003.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cross RW, et al. Monoclonal antibody therapy protects nonhuman primates against mucosal exposure to Lassa virus. Cell Rep Med. 2024;5(2):101392. https://doi.org/10.1016/j.xcrm.2024.101392.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cross RW, et al. A human monoclonal antibody combination rescues nonhuman primates from advanced disease caused by the major lineages of Lassa virus. Proc Natl Acad Sci U S A. 2023;120(34):e2304876120. https://doi.org/10.1073/pnas.2304876120.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woolsey C, et al. Monoclonal antibody therapy demonstrates increased virulence of a lineage VII strain of Lassa virus in nonhuman primates. Emerg Microb Infect. 2024;13(1):2301061.

    Google Scholar