close
close

Climate change threatens crop diversity at low latitudes

  • Ray, D. K. et al. Climate change has likely already affected global food production. PLoS ONE 14, e0217148 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sloat, L. L. et al. Climate adaptation by crop migration. Nat. Commun. 11, 1243 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Jägermeyr, J. et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2, 873–885 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Lesk, C. et al. Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nat. Food 2, 683–691 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA 114, 9326–9331 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Kummu, M., Heino, M., Taka, M., Varis, O. & Viviroli, D. Climate change risks pushing one-third of global food production outside the safe climatic space. One Earth 4, 720–729 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cang, F. A., Wilson, A. A. & Wiens, J. J. Climate change is projected to outpace rates of niche change in grasses. Biol. Lett. 12, 20160368 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ponce, C. Intra-seasonal climate variability and crop diversification strategies in the Peruvian Andes: a word of caution on the sustainability of adaptation to climate change. World Dev. 127, 104740 (2020).

    Article 
    MATH 

    Google Scholar 

  • Khoury, C. K. et al. Crop genetic erosion: understanding and responding to loss of crop diversity. New Phytol. 233, 84–118 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Labeyrie, V. et al. The role of crop diversity in climate change adaptation: insights from local observations to inform decision making in agriculture. Curr. Opin. Environ. Sustainability 51, 15–23 (2021).

    Article 
    MATH 

    Google Scholar 

  • Gardner, A. S., Trew, B. T., Maclean, I. M. D., Sharma, M. D. & Gaston, K. J. Wilderness areas under threat from global redistribution of agriculture. Curr. Biol. 33, 4721–4726.e2 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Khanal, A. R. & Mishra, A. K. Enhancing food security: food crop portfolio choice in response to climatic risk in India. Glob. Food Secur. 12, 22–30 (2017).

    Article 
    MATH 

    Google Scholar 

  • Nicholson, C. C., Emery, B. F. & Niles, M. T. Global relationships between crop diversity and nutritional stability. Nat. Commun. 12, 5310 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Kummu, M. et al. Interplay of trade and food system resilience: gains on supply diversity over time at the cost of trade independency. Glob. Food Secur. 24, 100360 (2020).

    Article 

    Google Scholar 

  • Bezner Kerr, R. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) 713–906 (Cambridge Univ. Press, 2022).

  • Hufford, M. B., Teran, J. C. B. M. Y. & Gepts, P. Crop biodiversity: an unfinished magnum opus of nature. Annu. Rev. Plant Biol. 70, 727–751 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Degani, E. et al. Crop rotations in a climate change scenario: short-term effects of crop diversity on resilience and ecosystem service provision under drought. Agric. Ecosyst. Environ. 285, 106625 (2019).

    Article 
    MATH 

    Google Scholar 

  • Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rising, J. & Devineni, N. Crop switching reduces agricultural losses from climate change in the United States by half under RCP 8.5. Nat. Commun. 11, 4991 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Rhiney, K., Eitzinger, A., Farrell, A. D. & Prager, S. D. Assessing the implications of a 1.5 °C temperature limit for the Jamaican agriculture sector. Reg. Environ. Change 18, 2313–2327 (2018).

    Article 

    Google Scholar 

  • Chemura, A., Schauberger, B. & Gornott, C. Impacts of climate change on agro-climatic suitability of major food crops in Ghana. PLoS ONE 15, e0229881 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hummel, M. et al. Reduction in nutritional quality and growing area suitability of common bean under climate change induced drought stress in Africa. Sci. Rep. 8, 16187 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Burke, M. B., Lobell, D. B. & Guarino, L. Shifts in African crop climates by 2050, and the implications for crop improvement and genetic resources conservation. Glob. Environ. Change 19, 317–325 (2009).

    Article 

    Google Scholar 

  • Grünig, M., Mazzi, D., Calanca, P., Karger, D. N. & Pellissier, L. Crop and forest pest metawebs shift towards increased linkage and suitability overlap under climate change. Commun. Biol. 3, 233 (2020).

  • Manners, R., Varela-Ortega, C. & van Etten, J. Protein-rich legume and pseudo-cereal crop suitability under present and future European climates. Eur. J. Agron. 113, 125974 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hannah, L. et al. The environmental consequences of climate-driven agricultural frontiers. PLoS ONE 15, e0228305 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Manners, R. et al. Suitability of root, tuber, and banana crops in Central Africa can be favoured under future climates. Agric. Syst. 193, 103246 (2021).

    Article 
    MATH 

    Google Scholar 

  • Ramirez-Cabral, N. Y. Z., Kumar, L. & Taylor, S. Crop niche modeling projects major shifts in common bean growing areas. Agric. For. Meteorol. 218–219, 102–113 (2016).

    Article 
    ADS 

    Google Scholar 

  • GAEZ v4 Data Portal (FAO & IIASA, 2021).

  • Zabel, F. Global agricultural land resources—a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions (v3.0). Zenodo (2022).

  • IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021); https://doi.org/10.1017/9781009157896

  • IFPRI Global spatially-disaggregated crop production statistics data for 2020 Version 1.0. Harvard Dataverse (2024).

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • IFPRI & IIASA Global spatially-disaggregated crop production statistics data for 2005 Version 3.2. Harvard Dataverse (2016).

  • IFPRI Global spatially-disaggregated crop production statistics data for 2010 Version 2.0. Harvard Dataverse (2019).

  • Cui, D., Liang, S. & Wang, D. Observed and projected changes in global climate zones based on Köppen climate classification. WIREs Clim. Change 12, e701 (2021).

    Article 
    MATH 

    Google Scholar 

  • Barbieri, P., Pellerin, S., Seufert, V. & Nesme, T. Changes in crop rotations would impact food production in an organically farmed world. Nat. Sustainability 2, 378–385 (2019).

    Article 

    Google Scholar 

  • Kinnunen, P. et al. Local food crop production can fulfil demand for less than one-third of the population. Nat. Food 1, 229–237 (2020).

    Article 
    MATH 

    Google Scholar 

  • Wassénius, E., Porkka, M., Nyström, M. & Søgaard Jørgensen, P. A global analysis of potential self-sufficiency and diversity displays diverse supply risks. Glob. Food Secur. 37, 100673 (2023).

    Article 

    Google Scholar 

  • Hertel, T. W., Burke, M. B. & Lobell, D. B. The poverty implications of climate-induced crop yield changes by 2030. Glob. Environ. Change 20, 577–585 (2010).

    Article 
    MATH 

    Google Scholar 

  • Adoption of the Paris Agreement (UNFCCC, 2015); http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf

  • Manners, R. & van Etten, J. Are agricultural researchers working on the right crops to enable food and nutrition security under future climates? Glob. Environ. Change 53, 182–194 (2018).

    Article 
    MATH 

    Google Scholar 

  • Mugiyo, H. et al. Multi-criteria suitability analysis for neglected and underutilised crop species in South Africa. PLoS ONE 16, e0244734 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peter, B. G., Messina, J. P., Lin, Z. & Snapp, S. S. Crop climate suitability mapping on the cloud: a geovisualization application for sustainable agriculture. Sci. Rep. 10, 15487 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cronin, J., Zabel, F., Dessens, O. & Anandarajah, G. Land suitability for energy crops under scenarios of climate change and land-use. GCB Bioenergy 12, 648–665 (2020).

    Article 

    Google Scholar 

  • Zabel, F., Putzenlechner, B. & Mauser, W. Global agricultural land resources—a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE 9, e107522 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tebaldi, C. et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253–293 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Food Balance Sheets 2010–2021 (FAO, 2023); https://openknowledge.fao.org/handle/20.500.14283/cc8088en

  • Pugh, Ta. M. et al. Climate analogues suggest limited potential for intensification of production on current croplands under climate change. Nat. Commun. 7, 12608 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Hasegawa, T. et al. A global dataset for the projected impacts of climate change on four major crops. Sci. Data 9, 58 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Iizumi, T. et al. Responses of crop yield growth to global temperature and socioeconomic changes. Sci. Rep. 7, 7800 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Varis, O., Taka, M. & Kummu, M. The planet’s stressed river basins: too much pressure or too little adaptive capacity? Earth’s Future 7, 1118–1135 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 084003 (2016).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Hall, C., Dawson, T. P., Macdiarmid, J. I., Matthews, R. B. & Smith, P. The impact of population growth and climate change on food security in Africa: looking ahead to 2050. Int. J. Agric. Sustainability 15, 124–135 (2017).

    Article 

    Google Scholar 

  • Iizumi, T. et al. Climate change adaptation cost and residual damage to global crop production. Clim. Res. 80, 203–218 (2020).

    Article 
    MATH 

    Google Scholar 

  • Atlin, G. N., Cairns, J. E. & Das, B. Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Glob. Food Secur. 12, 31–37 (2017).

    Article 

    Google Scholar 

  • van Zonneveld, M. et al. Forgotten food crops in sub-Saharan Africa for healthy diets in a changing climate. Proc. Natl Acad. Sci. USA 120, e2205794120 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Pironon, S. et al. Potential adaptive strategies for 29 sub-Saharan crops under future climate change. Nat. Clim. Change 9, 758–763 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Biesbroek, S. et al. Toward healthy and sustainable diets for the 21st century: importance of sociocultural and economic considerations. Proc. Natl Acad. Sci. USA 120, e2219272120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ceglar, A., Zampieri, M., Toreti, A. & Dentener, F. Observed northward migration of agro-climate zones in Europe will further accelerate under climate change. Earth’s Future 7, 1088–1101 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Bouras, E. et al. Assessing the impact of global climate changes on irrigated wheat yields and water requirements in a semi-arid environment of Morocco. Sci. Rep. 9, 19142 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Antwi-Agyei, P., Dougill, A. J. & Stringer, L. C. Barriers to climate change adaptation: evidence from northeast Ghana in the context of a systematic literature review. Clim. Dev. 7, 297–309 (2015).

    Article 

    Google Scholar 

  • ten Berge, H. F. M. et al. Maize crop nutrient input requirements for food security in sub-Saharan Africa. Glob. Food Secur. 23, 9–21 (2019).

    Article 
    MATH 

    Google Scholar 

  • Mora, C. et al. Global risk of deadly heat. Nat. Clim. Change 7, 501–506 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Zsögön, A., Peres, L. E. P., Xiao, Y., Yan, J. & Fernie, A. R. Enhancing crop diversity for food security in the face of climate uncertainty. Plant J. 109, 402–414 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Toreti, A. et al. Narrowing uncertainties in the effects of elevated CO2 on crops. Nat. Food 1, 775–782 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Xin, Y. & Tao, F. Optimizing genotype-environment-management interactions to enhance productivity and eco-efficiency for wheat-maize rotation in the North China Plain. Sci. Total Environ. 654, 480–492 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Smith, P. et al. Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Glob. Change Biol. 26, 1532–1575 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Janssens, C. et al. Global hunger and climate change adaptation through international trade. Nat. Clim. Change 10, 829–835 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Yu, Q. et al. A cultivated planet in 2010–part 2: the global gridded agricultural-production maps. Earth Syst. Sci. Data 12, 3545–3572 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • World Bank Country and Lending Groups—World Bank Data Help Desk (World Bank, 2010); https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups

  • Atwater, D. Z., Ervine, C. & Barney, J. N. Climatic niche shifts are common in introduced plants. Nat. Ecol. Evol. 2, 34–43 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Holdridge, L. R. Determination of world plant formations from simple climatic data. Science 105, 367–368 (1947).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jägermeyr, J., Müller, C., Minoli, S., Ray, D. & Siebert, S. GGCMI Phase 3 crop calendar. Zenodo (2021).

  • Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos Trans. Am. Geophys. Union 89, 93–94 (2008).

    Article 
    ADS 

    Google Scholar 

  • Heikonen, S. et al. Data from: climate change threatens crop diversity at low latitudes. Zenodo (2025).

  • Heikonen, S. et al. saraheikonen/crop-diversity: published article v1.0.1. Zenodo (2025).