close
close

Distinct horizontal gene transfer potential of extracellular vesicles versus viral-like particles in marine habitats

  • Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Welch, R. A. et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. 99, 17020–17024 (2002).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Glasner, M. E., Truong, D. P. & Morse, B. C. How enzyme promiscuity and horizontal gene transfer contribute to metabolic innovation. FEBS J. 287, 1323–1342 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Karberg, K. A., Olsen, G. J. & Davis, J. J. Similarity of genes horizontally acquired by Escherichia coli and Salmonella enterica is evidence of a supraspecies pangenome. Proc. Natl Acad. Sci. USA 108, 20154–20159 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagies, F. S. P., Brueckner, J., Tria, F. D. K. & Martin, W. F. A spectrum of verticality across genes. PLoS Genet. 16, e1009200 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lerat, E., Daubin, V., Ochman, H. & Moran, N. A. Evolutionary origins of genomic repertoires in bacteria. PLoS Biol. 3, e130 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Koonin, E. V. Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions. F1000Res 5, F1000 (2016).

  • Hehemann, J.-H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912 (2010).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Gillings, M. R. Lateral gene transfer, bacterial genome evolution, and the Anthropocene. Ann. N. Y. Acad. Sci. 1389, 20–36 (2017).

    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Coleman, M. L. et al. Genomic islands and the ecology and evolution of Prochlorococcus. Science 311, 1768–1770 (2006).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Frigaard, N.-U., Martinez, A., Mincer, T. J. & DeLong, E. F. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature 439, 847–850 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tettelin, H., Riley, D., Cattuto, C. & Medini, D. Comparative genomics: the bacterial pan-genome. Curr. Opin. Microbiol. 11, 472–477 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Abe, K., Nomura, N. & Suzuki, S. Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol. Ecol. fiaa031 (2020).

  • Dubnau, D. & Blokesch, M. Mechanisms of DNA uptake by naturally competent bacteria. Annu. Rev. Genet 53, 217–237 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Linney, M. D., Schvarcz, C. R., Steward, G. F., DeLong, E. F. & Karl, D. M. A method for characterizing dissolved DNA and its application to the North Pacific Subtropical Gyre. Limnol. Oceanogr. Methods 19, 210–221 (2021).

  • Ganesh, S., Parris, D. J., Delong, E. F. & Stewart, F. J. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. ISME J. 8, 187–211 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Fontanez, K. M., Eppley, J. M., Samo, T. J., Karl, D. M. & DeLong, E. F. Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre. Front. Microbiol. 6, 469 (2015).

  • Pelve, E. A., Fontanez, K. M. & Delong, E. F. Bacterial succession on sinking particles in the ocean’s interior. Front. Microbiol. 8, 605–615 (2017).

    Google Scholar 

  • Suttle, C. A. Marine viruses — major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Clokie, M. R. J., Millard, A. D., Wilson, W. H. & Mann, N. H. Encapsidation of host DNA by bacteriophages infecting marine Synechococcus strains. FEMS Microbiol. Ecol. 46, 349–352 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Laurenceau, R., Raho, N., Forget, M., Arellano, A. A. & Chisholm, S. W. Frequency of mispackaging of Prochlorococcus DNA by cyanophage. ISME J. 15, 129–140 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • McDaniel, L. D. et al. High frequency of horizontal gene transfer in the oceans. Science 330, 50–50 (2010).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Eppley, J. M., Biller, S. J., Luo, E., Burger, A. & DeLong, E. F. Marine viral particles reveal an expansive repertoire of phage-parasitizing mobile elements. Proc. Natl. Acad. Sci. 119, e2212722119 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kauffman, K. M. et al. Resolving the structure of phage–bacteria interactions in the context of natural diversity. Nat. Commun. 13, 372 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Hwang, Y., Roux, S., Coclet, C., Krause, S. J. E. & Girguis, P. R. Viruses interact with hosts that span distantly related microbial domains in dense hydrothermal mats. Nat. Microbiol. 8, 946–957 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Waterbury, J. B. & Valois, F. W. Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl. Environ. Microbiol. 59, 3393–3399 (1993).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sullivan, M. B., Waterbury, J. B. & Chisholm, S. W. Cyanophages infecting the oceanic cyanobacterium. Nature 424, 1047–1051 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Holmfeldt, K., Middelboe, M., Nybroe, O. & Riemann, L. Large variabilities in host strain susceptibility and phage host range govern interactions between lytic marine phages and their flavobacterium hosts. Appl. Environ. Microbiol. 73, 6730–6739 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deatherage, B. L. & Cookson, B. T. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect. Immun. 80, 1948–1957 (2012).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Toyofuku, M., Nomura, N. & Eberl, L. Types and origins of bacterial membrane vesicles. Nat. Rev. Microbiol. 17, 13–24 (2019).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Mandal, P. K., Ballerin, G., Nolan, L. M., Petty, N. K. & Whitchurch, C. B. Bacteriophage infection of Escherichia coli leads to the formation of membrane vesicles via both explosive cell lysis and membrane blebbing. Microbiology 167, 001021 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Turnbull, L. et al. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat. Commun. 7, 11220–13 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Toyofuku, M., Schild, S., Kaparakis-Liaskos, M. & Eberl, L. Composition and functions of bacterial membrane vesicles. Nat. Rev. Microbiol. 21, 415–430 (2023).

  • Sjöström, A. E., Sandblad, L., Uhlin, B. E. & Wai, S. N. Membrane vesicle-mediated release of bacterial RNA. Sci. Rep. 5, 15329 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yaron, S., Kolling, G. L., Simon, L. & Matthews, K. R. Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl. Environ. Microbiol. 66, 4414–4420 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bitto, N. J. et al. Bacterial membrane vesicles transport their DNA cargo into host cells. Sci. Rep. 7, 7072 (2017).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Biller, S. J. et al. Membrane vesicles in sea water: heterogeneous DNA content and implications for viral abundance estimates. ISME J. 11, 394–404 (2017).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Pérez-Cruz, C. & Delgado, L. Lόpez-Iglesias, C. & Mercade, E. Outer-inner membrane vesicles naturally secreted by gram-negative pathogenic bacteria. PLoS One 10, e0116896 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Erdmann, S., Tschitschko, B., Zhong, L., Raftery, M. J. & Cavicchioli, R. A plasmid from an Antarctic haloarchaeon uses specialized membrane vesicles to disseminate and infect plasmid-free cells. Nat. Microbiol. 2, 1446–1455 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Aktar, S. et al. Incorporation of plasmid DNA into bacterial membrane vesicles by peptidoglycan defects in Escherichia coli. Front. Microbiol. 12, 747606 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Biller, S. J. et al. Bacterial vesicles in marine ecosystems. Science 343, 183–186 (2014).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Lücking, D., Mercier, C., Alarcón-Schumacher, T. & Erdmann, S. Extracellular vesicles are the main contributor to the non-viral protected extracellular sequence space. ISME Commun. 3, 112 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hackl, T. et al. Novel integrative elements and genomic plasticity in ocean ecosystems. Cell 186, 47–62 (2023).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Tashiro, Y. et al. Interaction of bacterial membrane vesicles with specific species and their potential for delivery to target cells. Front. Microbiol. 8, 873–13 (2017).

    MATH 

    Google Scholar 

  • Biller, S. J. et al. Prochlorococcus extracellular vesicles: molecular composition and adsorption to diverse microbes. Environ. Microbiol. 24, 420–435 (2022).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Nazarian, P., Tran, F. & Boedicker, J. Q. Modeling multispecies gene flow dynamics reveals the unique roles of different horizontal gene transfer mechanisms. Front. Microbiol. 9, 2978 (2018).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Kauffman, K. M. et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature 554, 118–122 (2018).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Linney, M. D. et al. Microbial sources of exocellular DNA in the ocean. Appl. Environ. Microbiol. 88, e02093–21 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hagemann, S. et al. DNA-bearing membrane vesicles produced by Ahrensia kielensis and Pseudoalteromonas marina. J. Basic Microbiol. 54, 1062–1072 (2013).

    PubMed 
    MATH 

    Google Scholar 

  • Beaulaurier, J. et al. Assembly-free single-molecule sequencing recovers complete virus genomes from natural microbial communities. Genome Res. 30, 437–446 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Manning, A. J. & Kuehn, M. J. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 11, 258 (2011).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Moulin, C., Crupi, M. J. F., Ilkow, C. S., Bell, J. C. & Boulton, S. Extracellular vesicles and viruses: two intertwined entities. IJMS 24, 1036 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hurwitz, B. L. & U’Ren, J. M. Viral metabolic reprogramming in marine ecosystems. Curr. Opin. Microbiol. 31, 161–168 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Koonin, E. V., Dolja, V. V., Krupovic, M. & Kuhn, J. H. Viruses defined by the position of the virosphere within the replicator space. Microbiol Mol. Biol. Rev. 85, e00193–20 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • López-Pérez, M., Haro-Moreno, J. M., Coutinho, F. H., Martinez-Garcia, M. & Rodriguez-Valera, F. The evolutionary success of the marine bacterium SAR11 analyzed through a metagenomic perspective. mSystems 5, e00605–e00620 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • López-Pérez, M., Martin-Cuadrado, A.-B. & Rodriguez-Valera, F. Homologous recombination is involved in the diversity of replacement flexible genomic islands in aquatic prokaryotes. Front. Genet. 5, 147 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, Y. et al. Pelagiphages in the Podoviridae family integrate into host genomes. Environ. Microbiol. 21, 1989–2001 (2019).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Smyshlyaev, G., Bateman, A. & Barabas, O. Sequence analysis of tyrosine recombinases allows annotation of mobile genetic elements in prokaryotic genomes. Mol. Syst. Biol. 17, e9880 (2021).

  • Oliveira, P. H., Touchon, M., Cury, J. & Rocha, E. P. C. The chromosomal organization of horizontal gene transfer in bacteria. Nat. Commun. 8, 841 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barcia-Cruz, R. et al. Phage-inducible chromosomal minimalist islands (PICMIs), a novel family of small marine satellites of virulent phages. Nat. Commun. 15, 664 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodriguez-Valera, F., Martin-Cuadrado, A.-B. & Lόpez-Pérez, M. Flexible genomic islands as drivers of genome evolution. Curr. Opin. Microbiol. 31, 154–160 (2016).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Humphrey, S. et al. Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements. Nat. Commun. 12, 6509 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Johnston, E. L. et al. Planktonic and biofilm-derived Pseudomonas aeruginosa outer membrane vesicles facilitate horizontal gene transfer of plasmid DNA. Microbiol. Spectr. e05179-22 (2023).

  • Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P.A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Hackl, T. et al. Proovframe: frameshift-correction for long-read (meta)genomics. bioRxiv, (2021).

  • Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179, 1623–1635 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Becker, J. W., Hogle, S. L., Rosendo, K. & Chisholm, S. W. Co-culture and biogeography of Prochlorococcus and SAR11. ISME J. 13, 1506–1519 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 38, 1079–1086 (2020).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Tully, B. J., Sachdeva, R., Graham, E. D. & Heidelberg, J. F. 290 metagenome-assembled genomes from the Mediterranean Sea: a resource for marine microbiology. PeerJ 5, e3558 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Munson-McGee, J. H. et al. Decoupling of respiration rates and abundance in marine prokaryoplankton. Nature 612, 764–770 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).

    ADS 
    MATH 

    Google Scholar 

  • Oksanen, J. et al. Vegan: Community Ecology Package. (2022).

  • Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Camargo, A. P. et al. Identification of mobile genetic elements with geNomad. Nat. Biotechnol. 42, 1303–1312 (2023).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Cook, R. et al. INfrastructure for a PHAge REference database: identification of large-scale biases in the current collection of cultured phage genomes. Phage 2, 214–223 (2021).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Wickham, H. et al. Welcome to the Tidyverse. JOSS 4, 1686 (2019).

    ADS 
    MATH 

    Google Scholar 

  • Wickham, H. Ggplot2: elegant graphics for data analysis. (Springer-Verlag New York, 2016).

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Coelho, L. P. et al. Towards the biogeography of prokaryotic genes. Nature 601, 252–256 (2022).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Terzian, P. et al. PHROG: families of prokaryotic virus proteins clustered using remote homology. NAR Genom. Bioinform. 3, lqab067 (2021).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Flamholz, Z. N., Biller, S. J. & Kelly, L. Large language models improve annotation of prokaryotic viral proteins. Nat. Microbiol. 9, 537–549 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Paysan-Lafosse, T. et al. InterPro in 2022. Nucleic Acids Res. 51, D418–D427 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Brown, C. L. et al. mobileOG-db: a manually curated database of protein families mediating the life cycle of bacterial mobile genetic elements. Appl. Environ. Microbiol. 88, e00991–22 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1695, 1–9 (2006).

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490 (2010).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hackl, T., Ankenbrand, M., Adrichem, B. van, Wilkins, D. & Haslinger, K. gggenomes: effective and versatile visualizations for comparative genomics. arXiv, (2024).

  • Chan, P. P., Lin, B. Y., Mak, A. J. & Lowe, T. M. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 49, 9077–9096 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar