close
close

Enhanced hepatitis E virus infection of polarised hepatocytes in vitro

  • Izopet, J. et al. Hepatitis E virus infections in Europe. J. Clin. Virol. 120, 20–26. (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • WHO. Global Hepatitis Report. Report No. 978-92-4-156545-5 (Geneva, 2017).

  • Aslan, A. T., Balaban, H. Y. & Hepatitis, E. virus: Epidemiology, diagnosis, clinical manifestations, and treatment. World J Gastroenterol 26, 5543–5560, (2020). https://doi.org/10.3748/wjg.v26.i37.5543

  • Purdy, M. A. et al. ICTV virus taxonomy profile: hepeviridae 2022. J. Gen. Virol. 103 (2022).

  • EFSA, E. F. S. A. et al. Public health risks associated with hepatitis E virus (HEV) as a food-borne pathogen. EFSA J. 15, e04886. (2017).

    Article 

    Google Scholar 

  • Berto, A., Martelli, F., Grierson, S. & Banks, M. Hepatitis E virus in pork food chain, united Kingdom, 2009–2010. Emerg. Infect. Dis. 18, 1358–1360. (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Connor, M., Roche, S. J. & Sammin, D. Seroprevalence of hepatitis E virus infection in the Irish pig population. Ir. Vet. J. 68, 8. (2015).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Rose, N. et al. High prevalence of hepatitis E virus in French domestic pigs. Comp. Immunol. Microbiol. Infect. Dis. 34, 419–427. (2011).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Chelli, E. et al. Hepatitis E virus occurrence in pigs slaughtered in Italy. Anim. (Basel) 11 (2021).

  • Schlosser, J. et al. Natural and experimental hepatitis E virus genotype 3-infection in European wild Boar is transmissible to domestic pigs. Vet. Res. 45, 121. (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rivero-Juarez, A. et al. Familial hepatitis E outbreak linked to wild Boar meat consumption. Zoonoses Public. Health 64, 561–565. (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boxman, I. L. A. et al. Monitoring of pork liver and meat products on the Dutch market for the presence of HEV RNA. Int. J. Food Microbiol. 296, 58–64. (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wielick, C. et al. A randomized large-scale cross-sectional serological survey of hepatitis E Virus infection in Belgian pig farms. Microorganisms 11, (2023). https://doi.org/10.3390/microorganisms11010129

  • Palombieri, A. et al. A molecular study on hepatitis E virus (HEV) in pigs in Bulgaria. Vet. Sci. 8 (2021).

  • Fu, R. M., Decker, C. C. & Dao Thi, V. L. Cell culture models for hepatitis E virus. Viruses 11 (2019).

  • Shukla, P. et al. Cross-species infections of cultured cells by hepatitis E virus and discovery of an infectious virus-host recombinant. Proc. Natl. Acad. Sci. U S A 108, 2438–2443. (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Lorenzo, F. R. et al. Mutational events during the primary propagation and consecutive passages of hepatitis E virus strain JE03-1760F in cell culture. Virus Res. 137, 86–96. (2008).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Nguyen, H. T. et al. A naturally occurring human/hepatitis E recombinant virus predominates in serum but not in faeces of a chronic hepatitis E patient and has a growth advantage in cell culture. J. Gen. Virol. 93, 526–530. (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Kenney, S. P. & Meng, X. J. The lysine residues within the human ribosomal protein S17 sequence naturally inserted into the viral nonstructural protein of a unique strain of hepatitis E virus are important for enhanced virus replication. J. Virol. 89, 3793–3803. (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • van Tong, H. et al. Hepatitis E virus mutations: functional and clinical relevance. EBioMedicine 11, 31–42. (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Sridhar, S. Use of S17 fragment containing hepatitis E virus infectious clones in cell culture experiments: The fine print does matter. J. Viral Hepat. 25, 1105. (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Schemmerer, M., Johne, R., Erl, M., Jilg, W. & Wenzel, J. J. Isolation of subtype 3c, 3e and 3f-Like hepatitis e virus strains stably replicating to high viral loads in an optimized cell culture system. Viruses 11 (2019). https://doi.org/10.3390/v11060483

  • Kapur, N., Thakral, D., Durgapal, H. & Panda, S. K. Hepatitis E virus enters liver cells through receptor-dependent clathrin-mediated endocytosis. J. Viral Hepat. 19, 436–448. (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Treyer, A. & Musch, A. Hepatocyte polarity. Compr. Physiol. 3, 243–287. (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gissen, P. & Arias, I. M. Structural and functional hepatocyte polarity and liver disease. J. Hepatol. 63, 1023–1037. (2015).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Godoy, P. et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch. Toxicol. 87, 1315–1530. (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schulze, A., Mills, K., Weiss, T. S. & Urban, S. Hepatocyte polarization is essential for the productive entry of the hepatitis B virus. Hepatology 55, 373–383. (2012).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Yan, H. et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 1 (2012).

  • Evans, M. J. et al. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446, 801–805. (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Hirai-Yuki, A., Hensley, L., Whitmire, J. K. & Lemon, S. M. Biliary secretion of Quasi-Enveloped human hepatitis A virus. mBio 7 (2016).

  • Pellerin, M., Hirchaud, E., Blanchard, Y., Pavio, N. & Doceul, V. Characterization of a cell culture system of persistent hepatitis E virus infection in the human HepaRG hepatic cell line. Viruses 13 (2021).

  • Rogee, S. et al. New models of hepatitis E virus replication in human and Porcine hepatocyte cell lines. J. Gen. Virol. 94, 549–558. (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Capelli, N. et al. Vectorial release of hepatitis E virus in polarized human hepatocytes. J. Virol. 93 (2019).

  • Dao Thi, V. L. et al. Stem cell-derived polarized hepatocytes. Nat. Commun. 11, 1677. (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Sari, G. et al. The viral ORF3 protein is required for hepatitis E virus apical release and efficient growth in polarized hepatocytes and humanized mice. J. Virol. 95, e0058521. (2021).

    Article 
    PubMed 

    Google Scholar 

  • Takahashi, M. et al. Monoclonal antibodies Raised against the ORF3 protein of hepatitis E virus (HEV) can capture HEV particles in culture supernatant and serum but not those in feces. Arch. Virol. 153, 1703–1713. (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van der Kolk, D. M. et al. Activity and expression of the multidrug resistance proteins MRP1 and MRP2 in acute myeloid leukemia cells, tumor cell lines, and normal hematopoietic CD34 + peripheral blood cells. Clin. Cancer Res. 4, 1727–1736 (1998).

    PubMed 
    MATH 

    Google Scholar 

  • Fletcher, N. F. et al. Activated macrophages promote hepatitis C virus entry in a tumor necrosis factor-dependent manner. Hepatology 59, 1320–1330. (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Fletcher, N. F., Clark, A. R., Balfe, P. & McKeating, J. A. TNF superfamily members promote hepatitis C virus entry via an NF-kappaB and myosin light chain kinase dependent pathway. J. Gen. Virol. 98, 405–412. (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leon-Janampa, N. et al. A pig model of chronic hepatitis E displaying persistent viremia and a downregulation of innate immune responses in the liver. Hepatol. Commun. 7 (2023).

  • León-Janampa, N. et al. Relevance of tacrolimus trough concentration and hepatitis E virus genetic changes in kidney transplant recipients with chronic hepatitis E. Kidney Int. Rep. (2024).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Schulze, R. J., Schott, M. B., Casey, C. A., Tuma, P. L. & McNiven, M. A. The cell biology of the hepatocyte: A membrane trafficking machine. J. Cell. Biol. 218, 2096–2112. (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J. L. & Streuli, C. H. Integrins and epithelial cell polarity. J. Cell. Sci. 127, 3217–3225. (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Berto, A. et al. Replication of hepatitis E virus in three-dimensional cell culture. J. Virol. Methods 187, 327–332. (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Langhans, S. A. Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Front. Pharmacol. 9, 6. (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khoshdel-Rad, N. et al. Modeling hepatotropic viral infections: Cells vs. Anim. Cells 10 (2021).

  • Kalia, M., Chandra, V., Rahman, S. A., Sehgal, D. & Jameel, S. Heparan sulfate proteoglycans are required for cellular binding of the hepatitis E virus ORF2 capsid protein and for viral infection. J. Virol. 83, 12714–12724. (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yin, X., Ambardekar, C., Lu, Y. & Feng, Z. Distinct entry mechanisms for nonenveloped and quasi-enveloped hepatitis E viruses. J. Virol. 90, 4232–4242. (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zhang, L. et al. Asialoglycoprotein receptor facilitates infection of PLC/PRF/5 cells by HEV through interaction with ORF2. J. Med. Virol. 88, 2186–2195. (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Shiota, T. et al. Integrin alpha3 is involved in non-enveloped hepatitis E virus infection. Virology 536, 119–124. (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Schrader, J. A. et al. EGF receptor modulates HEV entry in human hepatocytes. Hepatology 77, 2104–2117. (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Singh, B. & Coffey, R. J. Trafficking of epidermal growth factor receptor ligands in polarized epithelial cells. Annu. Rev. Physiol. 76, 275–300. (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Mu, J. Z., Gordon, M., Shao, J. S. & Alpers, D. H. Apical expression of functional asialoglycoprotein receptor in the human intestinal cell line HT-29. Gastroenterology 113, 1501–1509. (1997).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Zeigerer, A. et al. Functional properties of hepatocytes in vitro are correlated with cell polarity maintenance. Exp. Cell. Res. 350, 242–252. (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Katt, M. E., Placone, A. L., Wong, A. D., Xu, Z. S. & Searson, P. C. Vitro tumor models: Advantages, disadvantages, variables, and selecting the right platform. Front. Bioeng. Biotechnol. 4, 12. (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meister, T. L., Bruening, J., Todt, D. & Steinmann, E. Cell culture systems for the study of hepatitis E virus. Antiviral Res. 163, 34–49. (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Cereijido, M., Valdes, J., Shoshani, L. & Contreras, R. G. Role of tight junctions in establishing and maintaining cell polarity. Annu. Rev. Physiol. 60, 161–177. (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shin, K., Fogg, V. C. & Margolis, B. Tight junctions and cell polarity. Annu. Rev. Cell. Dev. Biol. 22, 207–235. (2006).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Tanaka, T., Takahashi, M., Kusano, E. & Okamoto, H. Development and evaluation of an efficient cell-culture system for hepatitis E virus. J. Gen. Virol. 88, 903–911. (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Takahashi, M. et al. Hepatitis E virus (HEV) strains in serum samples can replicate efficiently in cultured cells despite the coexistence of HEV antibodies: characterization of HEV virions in blood circulation. J. Clin. Microbiol. 48, 1112–1125. (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shiota, T. et al. The hepatitis E virus capsid C-terminal region is essential for the viral life cycle: implication for viral genome encapsidation and particle stabilization. J. Virol. 87, 6031–6036. (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Shiota, T. et al. Establishment of hepatitis E virus infection-permissive and -non-permissive human hepatoma PLC/PRF/5 subclones. Microbiol. Immunol. 59, 89–94. (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Meng, X. J. et al. A novel virus in swine is closely related to the human hepatitis E virus. Proc. Natl. Acad. Sci. U S A 94, 9860–9865. (1997).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Locus, T. et al. A multifaceted approach for evaluating hepatitis E virus infectivity in vitro: cell culture and innovative molecular methods for integrity assessment. Vet. Sci. 10 (2023).

  • Hay, D. C. et al. Efficient differentiation of hepatocytes from human embryonic stem cells exhibiting markers recapitulating liver development in vivo. Stem Cells 26, 894–902. (2008).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Olsavsky Goyak, K. M., Laurenzana, E. M. & Omiecinski, C. J. Hepatocyte differentiation. Methods Mol. Biol. 640, 115–138. (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arterburn, L. M., Zurlo, J., Yager, J. D., Overton, R. M. & Heifetz, A. H. A morphological study of differentiated hepatocytes in vitro. Hepatology 22, 175–187 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Alizadeh, E. et al. The effect of dimethyl sulfoxide on hepatic differentiation of mesenchymal stem cells. Artif. Cells Nanomed. Biotechnol. 44, 157–164. (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Nikolaou, N., Green, C. J., Gunn, P. J., Hodson, L. & Tomlinson, J. W. Optimizing human hepatocyte models for metabolic phenotype and function: Effects of treatment with dimethyl sulfoxide (DMSO). Physiol. Rep. 4 (2016).

  • Belouzard, S. et al. Entry and release of hepatitis C virus in polarized human hepatocytes. J. Virol. 91 (2017).

  • Dubois-Pot-Schneider, H. et al. Transcriptional and epigenetic consequences of DMSO treatment on HepaRG cells. Cells 11 (2022).

  • Sugahara, G. et al. Long-term cell fate and functional maintenance of human hepatocyte through stepwise culture configuration. FASEB J. 37, e22750. (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Song, Y. M. et al. Dimethyl sulfoxide reduces hepatocellular lipid accumulation through autophagy induction. Autophagy 8, 1085–1097. (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choi, S., Sainz, B. Jr., Corcoran, P., Uprichard, S. & Jeong, H. Characterization of increased drug metabolism activity in dimethyl sulfoxide (DMSO)-treated Huh7 hepatoma cells. Xenobiotica 39, 205–217. (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhattacharyya, S., Tian, J., Bouhassira, E. E. & Locker, J. Systematic targeted integration to study albumin gene control elements. PLoS One 6, e23234. (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ji, H. et al. The different replication between nonenveloped and quasi-enveloped hepatitis E virus. J. Med. Virol. 93, 6267–6277. (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • van de Garde, M. D. et al. Hepatitis E virus (HEV) genotype 3 infection of human liver chimeric mice as a model for chronic HEV infection. J. Virol. 90, 4394–4401. (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Mee, C. J. et al. Hepatitis C virus infection reduces hepatocellular polarity in a vascular endothelial growth factor-dependent manner. Gastroenterology 138, 1134–1142. (2010).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar