close
close

Metformin modulates FJX1 via upregulation of Hsa-miR-1306-3p to suppress colon adenocarcinoma viability

  • Dong, Y. et al. The development and benefits of metformin in various diseases. Front. Med. 17, 388–431 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Lv, Z. & Guo, Y. Metformin and its benefits for various diseases. Front. Endocrinol. (Lausanne) 11, 191 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Kaneto, H., Kimura, T., Obata, A., Shimoda, M. & Kaku, K. Multifaceted mechanisms of action of metformin which have been unraveled one after another in the long history. Int. J. Mol. Sci. 22, 2596 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Skuli, S. J. et al. Metformin and cancer, an ambiguanidous relationship. Pharmaceuticals (Basel) 15, 626 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Bray, F. et al. Global cancer statistics 2022: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74, 229–263 (2024).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Tarhini, Z. et al. The effect of metformin on the survival of colorectal cancer patients with type 2 diabetes mellitus. Sci. Rep. 12, 12374 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Sugiura, K. et al. Metformin inhibits the development and metastasis of colorectal cancer. Med. Oncol. 39, 136 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Wang, Q. & Shi, M. Effect of metformin use on the risk and prognosis of colorectal cancer in diabetes mellitus: A meta-analysis. Anticancer Drugs 33, 191–199 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Sawicki, T. et al. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers (Basel) 13, 2025 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Taieb, J. et al. Deficient mismatch repair/microsatellite unstable colorectal cancer: Diagnosis, prognosis and treatment. Eur. J. Cancer 175, 136–157 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Hamdy, N. M. et al. Unraveling the ncRNA landscape that governs colorectal cancer: A roadmap to personalized therapeutics. Life Sci. 354, 122946 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rizk, N. I. et al. Revealing the role of serum exosomal novel long non-coding RNA NAMPT-AS as a promising diagnostic/prognostic biomarker in colorectal cancer patients. Life Sci. 352, 122850 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ng, C. W. et al. Metformin and colorectal cancer: A systematic review, meta-analysis and meta-regression. Int. J. Colorectal Dis. 35, 1501–1512 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Lee, J. W. et al. Metformin usage and the risk of colorectal cancer: A national cohort study. Int. J. Colorectal Dis. 36, 303–310 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Dukes, C. E. The classification of cancer of the rectum. J. Pathol. Bacteriol. 35, 323–332 (1932).

    Article 
    MATH 

    Google Scholar 

  • Puppa, G., Sonzogni, A., Colombari, R. & Pelosi, G. TNM staging system of colorectal carcinoma: A critical appraisal of challenging issues. Arch. Pathol. Lab. Med. 134, 837–852 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Geh, I. et al. Association of coloproctology of Great Britain & Ireland (ACPGBI): Guidelines for the management of cancer of the colon, rectum and anus (2017)—Anal cancer. Colorectal Dis. 19(Suppl 1), 82–97 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Amin, M. B. et al. The eighth edition AJCC cancer staging manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 67, 93–99 (2017).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Argiles, G. et al. Localised colon cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 31, 1291–1305 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Glynne-Jones, R. et al. Rectal cancer: ESMO Clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29, iv263 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, K., Collins, G., Wang, H. & Toh, J. W. T. Pathological features and prognostication in colorectal cancer. Curr. Oncol. 28, 5356–5383 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Delattre, J. F. et al. A comprehensive overview of tumour deposits in colorectal cancer: Towards a next TNM classification. Cancer Treat. Rev. 103, 102325 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Akkoca, A. N. et al. TNM and modified dukes staging along with the demographic characteristics of patients with colorectal carcinoma. Int. J. Clin. Exp. Med. 7, 2828–2835 (2014).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Eldosoky, M. A. et al. Diagnostic significance of hsa-miR-21-5p, hsa-miR-192-5p, hsa-miR-155-5p, hsa-miR-199a-5p panel and ratios in hepatocellular carcinoma on top of liver cirrhosis in HCV-infected patients. Int. J. Mol. Sci. 24, 3157 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Macfarlane, L. A. & Murphy, P. R. MicroRNA: Biogenesis, function and role in cancer. Curr. Genomics 11, 537–561 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Hamdy, N. M. et al. Advancements in current one-size-fits-all therapies compared to future treatment innovations for better improved chemotherapeutic outcomes: A step-toward personalized medicine. Curr. Med. Res. Opin. 40, 1943–1961 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • He, B. et al. miRNA-based biomarkers, therapies, and resistance in cancer. Int. J. Biol. Sci. 16, 2628–2647 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Hill, M. & Tran, N. miRNA interplay: Mechanisms and consequences in cancer. Dis. Model Mech. 14, dmm047662 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Segal, M. & Slack, F. J. Challenges identifying efficacious miRNA therapeutics for cancer. Expert. Opin. Drug. Discov. 15, 987–992 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Nangia-Makker, P. et al. Metformin: A potential therapeutic agent for recurrent colon cancer. PLoS One 9, e84369 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y., Chen, R., Deng, L., Shuai, Z. & Chen, M. The effect of metformin on the proliferation, apoptosis and CD133 mRNA expression of colon cancer stem cells by upregulation of miR 342–3p. Drug Des. Devel. Ther. 15, 4633–4647 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Hong, X. L. et al. Metformin abrogates FUSOBACTERIUM nucleatum-induced chemoresistance in colorectal cancer by inhibiting miR-361-5p/sonic hedgehog signaling-regulated stemness. Br. J. Cancer 128, 363–374 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saini, N. & Yang, X. Metformin as an anti-cancer agent: Actions and mechanisms targeting cancer stem cells. Acta Biochim. Biophys. Sin. (Shanghai) 50, 133–143 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Saito, A. et al. Metformin changes the immune microenvironment of colorectal cancer in patients with type 2 diabetes mellitus. Cancer Sci. 111, 4012–4020 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Kamarudin, M. N. A., Sarker, M. M. R., Zhou, J. R. & Parhar, I. Metformin in colorectal cancer: Molecular mechanism, preclinical and clinical aspects. J. Exp. Clin. Cancer Res. 38, 491 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, G. et al. The effects of metformin on autophagy. Biomed. Pharmacother. 137, 111286 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Niu, L. et al. Biological implications and clinical potential of metastasis-related miRNA in colorectal cancer. Mol. Ther. Nucleic Acids 23, 42–54 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Zhang, N., Hu, X., Du, Y. & Du, J. The role of miRNAs in colorectal cancer progression and chemoradiotherapy. Biomed. Pharmacother. 134, 111099 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Saberinia, A., Alinezhad, A., Jafari, F., Soltany, S. & Akhavan Sigari, R. Oncogenic miRNAs and target therapies in colorectal cancer. Clin. Chim. Acta 508, 77–91 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pichler, M. et al. MiR-200a regulates epithelial to mesenchymal transition-related gene expression and determines prognosis in colorectal cancer patients. Br. J. Cancer 110, 1614–1621 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Mogavero, A. et al. Metformin transiently inhibits colorectal cancer cell proliferation as a result of either AMPK activation or increased ROS production. Sci. Rep. 7, 15992 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Wang, Y., Wu, Z. & Hu, L. The regulatory effects of metformin on the [SNAIL/miR-34]:[ZEB/miR-200] System in the epithelial-mesenchymal transition (EMT) for colorectal cancer (CRC). Eur. J. Pharmacol. 834, 45–53 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Z. et al. Identification of potential diagnostic and prognostic biomarkers for colorectal cancer based on GEO and TCGA databases. Front. Genet. 11, 602922 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bu, T. et al. Regulation of sertoli cell function by planar cell polarity (PCP) protein Fjx1. Mol. Cell. Endocrinol. 571, 111936 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Huang, M. et al. Comprehensive analysis of the prognosis and immune effect of the oncogenic protein four jointed box 1. Front. Oncol. 13, 1170482 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Al-Greene, N. T. et al. Four jointed box 1 promotes angiogenesis and is associated with poor patient survival in colorectal carcinoma. PLoS One 8, e69660 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zou, J. et al. Multi-omics analysis of the tumor microenvironment in liver metastasis of colorectal cancer identified FJX1 as a novel biomarker. Front. Genet. 13, 960954 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, L. et al. FJX1 as a candidate diagnostic and prognostic serum biomarker for colorectal cancer. Clin. Transl. Oncol. 24, 1964–1974 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Cheng, T., Zhu, X., Lu, J. & Teng, X. MiR-532-3p suppresses cell proliferation, migration and invasion of colon adenocarcinoma via targeting FJX1. Pathol. Res. Pract. 232, 153835 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dang, W. & Zhu, Z. MicroRNA-1249 targets four-jointed box kinase 1 and reduces cell proliferation, migration and invasion of colon adenocarcinoma. J. Gene. Med. 22, e3183 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pan, Y., Zhang, Y., Hu, X. & Li, S. Construction of a novel cuproptosis-related ceRNA network-SNHG3/miR-1306-5p/PDHA1 and identification of SNHG3 as a prognostic biomarker in hepatocellular carcinoma. ACS Omega 8, 38690–38703 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dang, Y. et al. lncRNA AC007207.2 promotes malignant properties of osteosarcoma via the miR-1306–5p/SIRT7 axis. Cancer Manag. Res. 13, 7277–7288 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Liu, W. et al. Identifying a novel IRF3/circUHRF1/miR-1306-5p/ARL4C axis in pancreatic ductal adenocarcinoma progression. Cell Cycle 21, 392–405 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, W., Zhang, J., Fan, Y. & Zhang, L. MiR-1306-5p predicts favorable prognosis and inhibits proliferation, migration, and invasion of colorectal cancer cells via PI3K/AKT/mTOR pathway. Cell Cycle 21, 1491–1501 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Trotta, E. On the normalization of the minimum free energy of RNAs by sequence length. PLoS One 9, e113380 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Coronel-Hernandez, J. et al. Combination of metformin, sodium oxamate and doxorubicin induces apoptosis and autophagy in colorectal cancer cells via downregulation HIF-1alpha. Front. Oncol. 11, 594200 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Orang, A. et al. A functional screen with metformin identifies MicroRNAs that regulate metabolism in colorectal cancer cells. Sci. Rep. 12, 2889 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Sevim, C. et al. Investigation of the effects of metformin on the miR-21/PTEN/Akt pathway in HT-29 human colorectal adenocarcinoma cell and huvec co-culture. Cancer 72, 1 (2024).

    MATH 

    Google Scholar 

  • Chen, Y. C. et al. Effect of vitamin D supplementation on primary dysmenorrhea: A systematic review and meta-analysis of randomized clinical trials. Nutrients 15, 2830 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar